Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Antimicrob Resist Infect Control ; 12(1): 21, 2023 03 22.
Artigo em Inglês | MEDLINE | ID: covidwho-2268145

RESUMO

BACKGROUND: Risk factors for nosocomial COVID-19 outbreaks continue to evolve. The aim of this study was to investigate a multi-ward nosocomial outbreak of COVID-19 between 1st September and 15th November 2020, occurring in a setting without vaccination for any healthcare workers or patients. METHODS: Outbreak report and retrospective, matched case-control study using incidence density sampling in three cardiac wards in an 1100-bed tertiary teaching hospital in Calgary, Alberta, Canada. Patients were confirmed/probable COVID-19 cases and contemporaneous control patients without COVID-19. COVID-19 outbreak definitions were based on Public Health guidelines. Clinical and environmental specimens were tested by RT-PCR and as applicable quantitative viral cultures and whole genome sequencing were conducted. Controls were inpatients on the cardiac wards during the study period confirmed to be without COVID-19, matched to outbreak cases by time of symptom onset dates, age within ± 15 years and were admitted in hospital for at least 2 days. Demographics, Braden Score, baseline medications, laboratory measures, co-morbidities, and hospitalization characteristics were collected on cases and controls. Univariate and multivariate conditional logistical regression was used to identify independent risk factors for nosocomial COVID-19. RESULTS: The outbreak involved 42 healthcare workers and 39 patients. The strongest independent risk factor for nosocomial COVID-19 (IRR 3.21, 95% CI 1.47-7.02) was exposure in a multi-bedded room. Of 45 strains successfully sequenced, 44 (97.8%) were B.1.128 and differed from the most common circulating community lineages. SARS-CoV-2 positive cultures were detected in 56.7% (34/60) of clinical and environmental specimens. The multidisciplinary outbreak team observed eleven contributing events to transmission during the outbreak. CONCLUSIONS: Transmission routes of SARS-CoV-2 in hospital outbreaks are complex; however multi-bedded rooms play a significant role in the transmission of SARS-CoV-2.


Assuntos
COVID-19 , Infecção Hospitalar , Humanos , COVID-19/epidemiologia , SARS-CoV-2/genética , Infecção Hospitalar/epidemiologia , Infecção Hospitalar/prevenção & controle , Estudos de Casos e Controles , Estudos Retrospectivos , Surtos de Doenças , Fatores de Risco , Centros de Atenção Terciária , Alberta
2.
Microb Genom ; 9(1)2023 01.
Artigo em Inglês | MEDLINE | ID: covidwho-2230369

RESUMO

Pathogen genomics is a critical tool for public health surveillance, infection control, outbreak investigations as well as research. In order to make use of pathogen genomics data, they must be interpreted using contextual data (metadata). Contextual data include sample metadata, laboratory methods, patient demographics, clinical outcomes and epidemiological information. However, the variability in how contextual information is captured by different authorities and how it is encoded in different databases poses challenges for data interpretation, integration and their use/re-use. The DataHarmonizer is a template-driven spreadsheet application for harmonizing, validating and transforming genomics contextual data into submission-ready formats for public or private repositories. The tool's web browser-based JavaScript environment enables validation and its offline functionality and local installation increases data security. The DataHarmonizer was developed to address the data sharing needs that arose during the COVID-19 pandemic, and was used by members of the Canadian COVID Genomics Network (CanCOGeN) to harmonize SARS-CoV-2 contextual data for national surveillance and for public repository submission. In order to support coordination of international surveillance efforts, we have partnered with the Public Health Alliance for Genomic Epidemiology to also provide a template conforming to its SARS-CoV-2 contextual data specification for use worldwide. Templates are also being developed for One Health and foodborne pathogens. Overall, the DataHarmonizer tool improves the effectiveness and fidelity of contextual data capture as well as its subsequent usability. Harmonization of contextual information across authorities, platforms and systems globally improves interoperability and reusability of data for concerted public health and research initiatives to fight the current pandemic and future public health emergencies. While initially developed for the COVID-19 pandemic, its expansion to other data management applications and pathogens is already underway.


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , Pandemias , SARS-CoV-2/genética , Canadá , Genômica/métodos
3.
J Virol Methods ; 307: 114553, 2022 09.
Artigo em Inglês | MEDLINE | ID: covidwho-1867443

RESUMO

In order to detect the SARS-CoV-2 variants of concern (VOCs), five real-time reverse transcriptase PCR (rRT-PCR) assays were designed to target the critical discriminatory mutations responsible for the following amino acid changes in the spike protein: two Δ69-70 + N501Y + E gene triplexes (one optimized for Alpha [B.1.1.7] and one optimized for Omicron [B.1.1.529]), a K417N + 242-244 wild-type duplex, a K417T + E484K duplex, and a L452R + P681 + E484Q triplex. Depending on the assay, sensitivity was 98.97-100% for the detection of known VOC-positive samples, specificity was 97.2-100%, limit of detection was 2-116 copies/reaction, intra- and interassay variability was less than 5%, and no cross-reactivity with common respiratory pathogens was observed with any assay. A subset of rRT-PCR- positive VOC samples were further characterized by genome sequencing. A comparison of the lineage designation by the VOC rRT-PCR assays and genome sequencing for the detection of the Alpha, Beta, Gamma, Delta and Omicron variants showed clinical sensitivities of 99.97-100 %, clinical specificities of 99.6-100 %, positive predictive values of 99.8-100%, and negative predictive values of 99.98-100 %. We have implemented these rRT-PCR assays targeting discriminatory single nucleotide polymorphisms for ongoing VOC screening of SARS-CoV-2 positive samples for surveillance purposes. This has proven extremely useful in providing close to real-time molecular surveillance to monitor the emergence of Alpha, the replacement of Alpha by Delta, and the replacement of Delta by Omicron. While the design, validation and implementation of the variant specific PCR targets is an ever-evolving approach, we find the turn-around-time, high throughput and sensitivity to be a useful complementary approach for SARS-CoV-2 genome sequencing for surveillance purposes in the province of Alberta, Canada.


Assuntos
COVID-19 , Reação em Cadeia da Polimerase em Tempo Real , SARS-CoV-2 , COVID-19/diagnóstico , Humanos , Mutação , RNA Viral/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , SARS-CoV-2/genética , Sensibilidade e Especificidade
4.
Microbiol Spectr ; 9(1): e0031521, 2021 09 03.
Artigo em Inglês | MEDLINE | ID: covidwho-1352540

RESUMO

SARS-CoV-2 variants of concern (VOCs) have emerged as a global threat to the COVID-19 pandemic response. We implemented a combined approach to quickly detect known VOCs while continuously monitoring for evolving mutations of the virus. To rapidly detect VOCs, two real-time reverse transcriptase PCR assays were designed and implemented, targeting the spike gene H69/V70 deletion and the N501Y mutation. The H69/V70 deletion and N501Y mutation assays demonstrated accuracies of 98.3% (95% CI 93.8 to 99.8) and 100% (95% CI 96.8 to 100), limits of detection of 1,089 and 294 copies/ml, and percent coefficients of variation of 0.08 to 1.16% and 0 to 2.72% for the two gene targets, respectively. No cross-reactivity with common respiratory pathogens was observed with either assay. Implementation of these tests allowed the swift escalation in testing for VOCs from 2.2% to ∼100% of all SARS-CoV-2-positive samples over 12 January to 9 February 2021, and resulted in the detection of a rapid rise of B.1.1.7 cases within the province of Alberta, Canada. A prospective comparison of the VOC assays to genome sequencing for the detection of B.1.1.7, combined detection of P.1 and B.1.351, and wild-type (i.e., non-VOC) lineages showed sensitivities of 98.2 to 100%, specificities of 98.9 to 100%, positive predictive values of 76.9% to 100%, and negative predictive values of 96 to 100%. Variant screening results inform sampling strategies for regular surveillance by genome sequencing, thus allowing rapid identification of known VOCs while continuously monitoring the evolution of SARS-CoV-2 in the province. IMPORTANCE Different strains, or variants, of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2, the virus that causes COVID-19) have emerged that have higher levels of transmission, less susceptibility to our immune response, and possibly cause more severe disease than previous strains of the virus. Rapid detection of these variants of concern is important to help contain them and prevent them from spreading widely within the population. This study describes two newly developed tests that are able to identify and differentiate the variants of concern from regular strains of SARS-CoV-2. These tests are faster and simpler than the main, gold standard method of identifying variants of concern (genome sequencing). These tests also demonstrated a high correlation with genome sequencing and allowed for the rapid and accurate detection of the rise of B.1.1.7 (one of the variants of concern) in the province of Alberta, Canada.


Assuntos
COVID-19/virologia , SARS-CoV-2/classificação , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , Sequência de Bases , COVID-19/diagnóstico , Teste de Ácido Nucleico para COVID-19 , Canadá , Humanos , Mutação , Pandemias , Reação em Cadeia da Polimerase , Estudos Prospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA